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By adapting data from national and state champion lists and the predictions of an existing height model, an exponential function was developed to improve
tree height estimation. As a case study, comparisons between the original and redesigned model were made with eastern white pine (Pinus strobus L.). For
example, the heights predicted by the new design varied by centimeters from the original until the pines were more than 25 cm dbh, after which the differences
increased notably. On a very good site (50-year base age site index [SI50] � 27.4 m) at the upper end of the range of basal area (BA; 68.9 m2/ha) for
the region, the redesigned model predicted a champion-sized eastern white pine (actual measurements: 97.0 cm dbh, 50.9 m tall) to be 51.3 m tall, compared
with 38.8 m using the original formulation under the same conditions. The NORTHWDS Individual Response Model (NIRM) individual tree model further
highlighted the influence of these differences with long-term simulations of eastern white pine height. On a moderate site (SI50 � 18.7 m) with intermediate
(BA � 15 m2/ha) stand density, NIRM results show that the original model consistently predicts heights to be 20 –30% lower for mature white pine.
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The desire to predict some future state or to more readily
anticipate certain biophysical attributes has long driven
modelers in many fields, including forestry. As a result, al-

lometric relationships between easily measured tree attributes and
those not as readily acquired have been developed for decades. For
example, dbh is one of the most commonly used characteristics of
trees because it is easy to accurately measure and generally serves as
a good predictor of other attributes such as height, bole volume, and
crown width (Colbert et al. 2002). Accurate portrayal of allometry is
increasingly important because of a growing trend to model rather
than measure certain tree characteristics in large-scale inventories to
save time and money (e.g., Bechtold et al. 2002, Barrett 2006).

Models of tree height based on diameter have been generated
with considerable success, and most published height–diameter
equations explain a large proportion of the variation in the data from
which they were derived. However, a truly successful height model
depends on more than just a high coefficient of determination
(Hasenauer and Monserud 1997). It should also conform to the
biology of the species across the range of possible sizes (Lei and
Parresol 2001). Genetics, competitive dynamics, hydraulics, and
bole loading all help constrain trees from maintaining a strictly
linear rise in height with increasing diameter (King 1990, Ryan and
Yoder 1997, Becker et al. 2000, Koch et al. 2004). Experimentation
suggests that there is an absolute upper tree height (e.g., Koch et al.
2004, Woodruff et al. 2004, Burgess and Dawson 2007, Domec et
al. 2008), but for most species, this is considerably greater than what
is seen in nature. Because height increment gradually tapers off
compared with diameter, models of height–diameter relationships
should reflect this property. However, it is possible to fix the maxi-
mum height asymptote too low, thereby unnecessarily constraining
predictions, resulting in a gradually increasing bias that propagates
as error. There is evidence that many height–diameter models sys-
tematically underestimate height for larger trees. For instance, Peng

et al. (2001) reported that all the functions they tested underesti-
mated height for six of the nine species considered.

Height prediction errors can be further accentuated when regres-
sion models are extended outside the range of data from which they
were derived (e.g., Payandeh and Wang 1994). This statistically
questionable practice, although undesirable, is often driven by the
needs of the user and the lack of a more appropriate model (Shifley
and Brand 1984). Given that many users apply tree height models
regardless of their statistical limits, it behooves model developers to
ensure reasonable behavior of these models beyond their original
source data. This can be shown with a commonly applied height–
diameter model. Using data from forest survey plots in Michigan,
Minnesota, and Wisconsin, Ek et al. (1984) fit the function,

ĤR � 4.5 � b1�1 � e�b2DBH�b3SIb4Tb5BAb6, (1)

where ĤR is the predicted height (in feet), bi are fitted regression
coefficients, SI is site index (SI; in feet at 50 years), BA is stand basal
area (in square feet per acre), and T is a simple upper stem taper
expression for total tree height. Because most of their inventory data
were less than 60 cm in dbh and the vast majority of trees in Lake
States forests are less than this diameter, predictions from Equation
1 are probably as reliable as any other model for small- to moder-
ate-sized trees.

Some species, however, grow considerably larger than this on a
regular basis. In the northern Lake States, eastern white pine (Pinus
strobus L.) often grows to 75–100 cm dbh and between 40 and 50 m
tall (e.g., American Forests 2000, Eastern Native Tree Society
[ENTS] 2004; D.C. Bragg, unpublished data, 2008) and histori-
cally may have exceeded 180 cm dbh and 60 m tall (Leech 1939,
Rucker 2004). The original data of Ek et al. (1984) included a
maximum eastern white pine dbh of 91.2 cm. With this as an upper
diameter threshold, Equation 1 produces a distinctive height–diam-
eter curve. Given a high stand density (68.9 m2/ha) and a very good
site quality (50-year base age, SI50 � 27.4 m), Equation 1 predicts a
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37.7-m tall eastern white pine at a dbh of 80 cm (Figure 1). After-
ward, total height increases to 39.6 m when the pine grows to 120
cm in dbh and 40.1 m at 160 cm dbh. Thus, it appears that for
densely grown eastern white pine on a high-quality site, the original
model asymptotes at a maximum height of just over 40 m—not a
good reflection of the potential of this species.

Low asymptotic height curves are not exclusive to the model of
Ek et al. (1984). Eastern white pine SI models for this region (e.g.,
Hahn and Carmean 1982) also reflect a greatly diminished rate of
increase over large portions of their age structure, especially past 150
years. If these relationships were developed for the maximum height
physiologically possible, this flattening would probably not be an
issue. However, this is not the case, and dramatic underestimates of
total tree height are likely for very large individuals. Hence, we need
to extend existing height models to project across more of the range
of possible tree size—other researchers have noted curves fit solely to
shorter individuals do not adequately predict height in very tall trees
(e.g., Smith 1984). This article offers a possible solution to this
problem without involving new field-based height measurements by
merging existing height–diameter model predictions with readily
available champion tree information.

Methods
Conceptual Limits to Tree Height Models

Height–diameter models should have intuitive beginning and
ending points. Most tree models use dbh as one starting point—by
definition, trees shorter than 1.37 m tall have no dbh. Therefore, a
logical height–diameter model would ideally yield a height of
1.37 m when dbh approaches zero, i.e., Limdbh30 f (dbh) � 1.37,
where f (dbh) is the diameter-based height equation. However, the
intercept at dbh � 0.0 may vary if the diameter is measured at a
different location. For example, Parresol (1992) measured baldcy-

press (Taxodium distichum [L.]) Rich.) at 3.0 m aboveground to
avoid the massive buttress typical of this species. Also, some height–
diameter functions are optimized for other portions of the diameter
range and thus may not pass through the nominal lower intercept of
[0, 1.37].

The end point of this function occurs at the maximum diameter
possible for a species growing on its best possible site at a local
density conducive to the greatest vertical elongation (assuming no
crown breakage or dieback). Unfortunately, this optimal suite of
conditions is unknown for every species. However, “big trees” can
be used to approximate this state (e.g., Shifley and Brand 1984,
Parresol 1995). Champion tree information is readily available for
virtually every species in the United States (e.g., American Forests
2000). Many states and organizations (e.g., the ENTS) maintain
their own lists, allowing for more regional calibration. Furthermore,
most big trees reported in these lists benefit from having both their
total height and their circumference validated by trained observers.

Champion tree information is easily available and readily adapt-
able. However, a couple of issues related to data quality and type
should be recognized. First, a considerable degree of measurement
error has been noted in some big tree reports (e.g., Rucker 2004,
Blozan 2006, Bragg 2007)—grossly erroneous champions must be
identified and avoided. Second, trees listed as champions are usually
scored from the sum of height, diameter, and some fraction of crown
width, so the combination of these factors may not actually reflect
the most appropriate allometry for developing a maximized height–
diameter model. It is possible for a large open-grown tree with a
spreading crown and thick stem to have a “bigness index” score
significantly higher than a taller but thinner tree in a closed canopy
forest. Thus, a champion tree may not reflect the maximum propor-
tion of height to diameter. For instance, while noticeably larger in

Figure 1. Plot of Ek et al.’s (1984) and Peng et al.’s (2001) height–diameter equations for eastern white pine, assuming an SI of 27.4 m
and a stand density of 68.9 m2/ha. The diminished segments of their curves are extrapolations beyond the range of data used to derive
them. The triangles in the upper right represent the height–diameter relationship of several current and former national champion eastern
white pines. AFA � American Forestry Association (1990); AmFor � American Forests (2000); ENTS � Eastern Native Tree Society (2004).
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diameter, the 2000 national champion eastern white pine (Ameri-
can Forests 2000) is shorter than the tallest eastern white pine from
Wisconsin reported on the ENTS website (ENTS 2004, Figure 1).
Fortunately, so long as the geographic extent of the sampled big tree
is appropriate and the dimensions used are reliable, any accurately
measured tree (living or dead, past or present) is a valid end point.
Some state lists (e.g., Wisconsin’s) are also more useful than the
national register because they list multiple examples from which to
select the maximum height–diameter relationship.

Point Selection and Modeling Approach
For this article, the height model extension procedure is straight-

forward. Using Equation 1 (hereafter called the “original model”), a
series of points along this curve are generated extending out to the
largest dbh in the original data, assuming maximum site quality and
stand density conditions (Figure 2a). Two additional points are
included in this data set—one for height when dbh becomes just
more than 0 (at 1.37 m, in this case), and one representing the
assumed maximum height–diameter value (Figure 2b). In the end,
only a few of the Ek et al. (1984) predicted height–diameter points
are retained to help define the shape of the curve (Figure 2b). This
subset of points was chosen to best fit the curve through the cham-
pion tree point, and the rest were deleted as underestimates of height
potential. Although this may not seem to provide adequate data to

express height over such a range of diameters, it is possible to fit
reasonable allometric curves using very limited information (e.g.,
Zeide 1978).

It is likely that any of a number of height formulations could fit
different species equally well, and that no single model will always
yield the best fit in every species. However, modelers prefer to use
one general model form to economize their code development. Be-
cause the ultimate destination of these height–diameter models is an
ecological simulator, a single response function will be used in this
article. The following exponential function was fit to the remaining
points (Figure 2c):

Ĥmax � b0 � b1e
b2/�DBH�b3�, (2)

where Ĥmax equals the maximum possible tree height and b0 to b3

are nonlinear ordinary least squares coefficients. Equation 2 was
chosen for its relatively simple form, few coefficients, and sigmoidal
relationship between the independent and dependent variables. An-
other advantage is that the exponential function is also less prone to
yield a flattened height–diameter relationship commonly observed
with the Chapman-Richards equation.

The Ĥmax is probably rarely achieved and almost never measured.
This suggests that a more useful formulation of Equation 2 would
include a set of n modifying functions (m) to act as multipliers

Figure 2. Graphical representation of the procedures used to extend the Ek et al. (1984) tree height model for eastern white pine. (a)
First, the original height–diameter equation was plotted for all possible diameters. (b) Next, the two end points (when dbh � 0 and dbh �
dbhmax) are added, and the majority of the original predicted points are removed with the exception of those used to define the shape
of the curve. (c) Using ordinary least squares nonlinear regression, a curve was then fitted to the remaining points, and (d) when adjusted
for site quality and local BA, a range of height–diameter curves became available.
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and rescale height as a function of suboptimal site and stand
conditions:

ĤR � �b0 � b1e
b2/�DBH�b3�� �

i�1

n

mi . (2a)

The rescaling of an optimized function has been used in a number of
ecological models (e.g., Botkin et al. 1972, Chertov 1990, Bragg
2001, Papaik and Canham 2006). This technique allows the user to
separate the general response curve from the factors influencing its
behavior, as long as the estimate of the function is a valid expression
of the response to a known, easily measured parameter (in this case,
diameter). If this condition is met, the modifier functions yield a
value of [0, 1], with a value of 1 indicating an “optimal” state, and
any outcome less than this reduces potential. For height prediction,
critical response functions include the relationship between the tree
and site quality, and the tree and stand density (e.g., Ek et al. 1984,
Parresol 1992), but factors such as crown position, hydraulic con-
ductivity, genotypic differences, and/or geographic location could
be incorporated as appropriate. As an example, one of the most
relevant environmental factors influencing tree height is site quality.
Hence, a relation between tree height and relative SI could be ex-
pressed as,

m1 � � SI

SImax
�b4

, (3a)

where SImax is the maximum reported SI (or the mean height of
dominants and codominants at 50 years) for a species, and b4 is a
fitted regression coefficient (in this case, the same b4 value reported
in Ek et al. [1984]). All other conditions being equal, trees of the
same diameter will be shorter on poorer sites than good sites (Ryan
and Yoder 1997, Fulton 1999).

Stand density also helps to control tree height response—the
denser the stand and greater the competition for light, the taller the
trees grow in relation to diameter. Conversely, open-grown trees
have no competitive driver to grow taller, even though tree biology
ensures some vertical elongation. In more physiological terms (e.g.,
Lanner 1985), open-grown trees have many more apical meristems
competing for carbohydrates during the early season periods of ver-
tical elongation. For dominant and codominant trees in closed can-
opy stands, height growth after bud elongation is more likely to be
focused on a single (or small number of) leader(s), thus ensuring a
fairly consistent level of height production regardless of crown po-
sition in all but the most suppressed individuals.

Note the empirical derivation of predominantly forest-grown
trees in the original formulation of Equation 1 does not allow for
vertical height for purely open-grown individuals, as the multiplier
under this case equals 0 (making total height 1.37 m regardless of
tree size or site quality). To avoid this problem, an adjustment to this
modifier was used:

m2 � �0.5 �
�BA/BAmax�

b5

2 �, (3b)

where the stand basal area (BA) for the individual tree is rescaled as
a proportion of the maximum possible (BAmax) for the region (as-
sumed, in this case, to be 68.9 m2/ha) and b5 � 2 � the b6 coeffi-
cient from Ek et al. (1984, Table 2). This design yields open-grown
(BA � 0) trees 50% as tall as those in maximally dense stands (when
BA � BAmax), thereby avoiding the logical discontinuity of the

original design, while still closely tracking height patterns of Equa-
tion 1 at more common forest densities. Currently, this adjustment
is one-sided (linear) as opposed to being two-sided (modal) because
this model focuses on dominant or codominant individuals. Highly
suppressed trees have very little height growth under high stand
densities—a modifier to reflect this tendency would require some
measure of crown position to differentiate tree canopy level.

By incorporating these site and stand modifiers, the following
instantaneous height function is produced:

ĤR � �b0 � b1e
b2/�DBH�b3��� SI

SImax
�b4�0.5 �

�BA/BAmax�
b5

2 �, (3)

where all coefficients and variables are as previously described. Be-
cause SI and BA are always less than or equal to SImax and BAmax,
respectively, and b4 and b5 are between 0 and 1, these modifiers
reduce growth from the potential implied in the first term of Equa-
tion 3 and, hence, can produce a surface reflecting the influence of
both site quality and stand density (Figure 2d). This approach also
allows for additional modifiers to be included as needed, or for
different response functions between site quality and stand density
to be used, if desired.

A very good site for most species in the northern Lake States is
usually about 27.4 m (base age of 50 years) and stand basal area
rarely exceeds 68.9 m2/ha. Hence, an equation fit assuming the
champion tree found on the highest site quality possible (SI/SImax �
1) actually produces a conservative estimate of maximum height
potential because (probably without exception) champion trees are
not found in a maximally dense stand on site of best quality for that
species. In other words, a tree living on such a hypothetical site
reaching the diameter of a champion tree would almost certainly be
taller than those reported in the literature.

Results and Discussion
Table 1 lists maximal dimensions for 31 species common to the

northern Lakes States (Michigan, Minnesota, and Wisconsin). Note
that these values are not assumed to represent the absolute maxima
possible for each species—one of the advantages to this height
model extension technique is that new information can be used to
continually improve on the process. This list of species is also larger
than those originally reported in Ek et al. (1984), reflecting the
needs of a new model system capable of projecting tree height for
more taxa. However, for the purposes of this article, eastern white
pine will provide most of the examples, given that the other taxa
responded similarly.

Table 2 provides the parameter estimates of the tree species in
Table 1. Where possible, the species equations were fit to generate a
height of 1.37 m at dbh � 0, the height of a tree of champion size
and the lower tail of the predictions of Ek et al.’s equation (including
the inflection point, if possible). Figure 3 illustrates the original and
new height–diameter equations for three basal areas (0.0, 23.0, and
68.9 m2/ha) for eastern white pine at an SI50 � 21.3 m. Given its
original formulation, Equation 1 returns a value of 1.37 m for all
diameters under open-grown conditions. This particular outcome is
a result of the original equation’s structure and data-based deriva-
tion (which did not include open-grown individuals). As basal area
increased, Equation 1 produced trees with height, although the
model’s form helped constrain the range. For instance, even under
the most favorable conditions for tall, dominant, or codominant

NORTH. J. APPL. FOR. 25(4) 2008 189



Table 1. Champion tree dimensions and sources used in this study.

Common name Species
Champion
dbh (cm)

Champion
height (m) State Sourcea

Maxmum
SI (m)

Balsam fir Abies balsamea (L.) Mill. 67.8 35.36 MI 1 22.0
Red maple Acer rubrum L. 179.6 42.37 MI 1 23.0
Silver maple Acer saccharinum L. 223.3 38.10 MI 1 27.4
Sugar maple Acer saccharum Marsh. 111.8 38.40 WI 4 23.0
Yellow birch Betula alleghaniensis Britton 99.1 30.48 WI 4 24.0
Paper birch Betula papyrifera Marsh. 177.8 32.61 MI 3 25.0
American hornbeam Carpinus caroliniana Walt. 25.1 20.90 SC 5 12.0
American beech Fagus grandifolia Ehrh. 86.9 30.48 WI 4 20.0
White ash Fraxinus americana L. 88.9 34.44 WI 4 26.0
Black ash Fraxinus nigra Marsh. 80.0 47.24 MI 1 24.0
Green ash Fraxinus pennsylvanica Marsh. 82.6 25.91 WI 4 27.4
Tamarack Larix laricina (Du Roi) K. Koch 79.2 25.91 WI 4 22.0
Eastern hophornbeam Ostrya virginiana (Mill.) K. Koch 42.0 21.60 MI 3 12.0
White spruce Picea glauca (Moench) Voss 101.6 39.62 MN 3 22.0
Black spruce Picea mariana (Mill.) B.S.P. 48.5 25.30 MN 1 22.0
Jack pine Pinus banksiana Lamb. 56.1 29.57 WI 4 22.0
Red pine Pinus resinosa Ait. 99.6 46.94 MI 1 27.4
Eastern white pine Pinus strobus L. 97.0 50.90 WI 5 27.4
Balsam poplar Populus balsamifera L. 131.8 42.06 MI 1 14.0
Eastern cottonwood Populus deltoides Bartr. 236.0 39.62 WI 4 27.4
Bigtooth aspen Populus grandidentata Michx. 83.8 40.23 MI 3 26.0
Quaking aspen Popolus tremuloides Michx. 98.6 33.22 MI 3 26.0
Pin cherry Prunus pennsylvanica L. 21.1 19.20 MN 2 17.0
Black cherry Prunus serotina Ehrh. 146.3 42.06 MI 1 24.0
White oak Quercus alba L. 138.2 32.92 WI 4 24.0
Bur oak Quercus macrocarpa Michx. 200.4 24.99 MN 2 21.0
Northern red oak Quercus rubra L. 111.8 34.44 WI 4 23.0
Northern white-cedar Thuja occidentalis L. 120.4 28.04 WI 4 20.0
American basswood Tilia americana L. 139.7 35.05 WI 4 24.0
Eastern hemlock Tsuga canadensis (L.) Carr. 100.3 30.78 WI 4 15.0
American elm Ulmus americana L. 175.3 36.58 WI 4 24.0

Maximum SI values for species are inferred from existing Lake States equations (e.g., Hahn and Carmean 1982).
aChampion tree source: 1 � American Forestry Association (1990); 2 � Minnesota State Champions List (www.dnr.state.mn.us/trees_shrubs/bigtree/list.html); 3 � American Forests (2000); 4 �
Wisconsin State Champions List (www.dnr.wi.gov/forestry/UF/champion/); 5 � ENTS List (www.nativetreesociety.org/bigtree/webpage_tall_tree_list.htm).

Table 2. Regression coefficients for the new height equation, including number of samples used to derive the coefficients (n), SI, and
stand BA components.

Species n b0 b1 b2 b3 b4
a b5 Notesb

Balsam fir 12 �3.5690 55.6720 �28.5025 11.5348 0.23349 0.24798
Red maple 8 �61.2065 109.3265 �10.9460 19.5471 0.40115 0.24806
Silver maple 7 �107.2704 148.7370 �5.8860 19.0611 0.48660 0.03236
Sugar maple 8 �80.2615 126.6577 �8.8148 20.1736 0.54194 0.12744
Yellow birch 8 1.0393 32.8188 �11.3292 2.4467 0.38884 0.22822
Paper birch 10 �2.2639 36.5706 �9.4084 4.0686 0.41179 0.22092
American hornbeam 8 �9.6322 71.5267 �39.0985 20.7910 0.20000 0.16456 1
American beech 8 1.3213 33.6118 �13.0625 0.8975 0.55634 0.19186 1
White ash 8 1.2955 38.3576 �13.4365 2.1370 0.38694 0.21694
Black ash 7 �74.5467 155.2930 �29.4781 41.1166 0.35711 0.13718
Green ash 6 1.3797 27.5871 �8.4203 0.6061 0.35711 0.13718
Tamarack 8 1.4037 27.5595 �8.3440 0.8704 0.25831 0.21542
Eastern hophornbeam 10 0.3520 29.8218 �15.8764 4.6614 0.20000 0.16456 1
White spruce 10 �4.6559 61.2225 �38.5219 16.1819 0.05000 0.32400 2
Black spruce 9 0.9019 32.5804 �15.0132 3.5622 0.17836 0.20318
Jack pine 8 �44.1874 89.7923 �15.6964 23.1881 0.20854 0.25804
Red pine 9 �110.2130 205.1634 �47.6949 78.9359 0.05000 0.36462 2
Eastern white pine 17 �101.2377 187.0880 �31.0606 52.1397 0.16220 0.46632
Balsam poplar 7 �76.5267 134.0617 �20.9845 38.7892 0.47370 0.16456
Eastern cottonwood 8 0.3186 41.7305 �15.1331 4.0280 0.30651 0.14920
Bigtooth aspen 7 �110.7650 161.1770 �6.8805 19.1626 0.46918 0.23564
Quaking aspen 8 0.8275 36.7523 �12.9056 3.0611 0.47370 0.16456
Pin cherry 10 �5.1546 51.3821 �23.2703 11.1475 0.30000 0.16576 1
Black cherry 7 �8.7875 57.1306 �18.4043 10.5846 0.40000 0.24806 1
White oak 8 �30.4205 66.6220 �7.6467 10.3271 0.31723 0.26930
Bur oak 6 1.3773 24.4655 �6.1258 0.7108 0.31723 0.26930 1
Northern red oak 7 �30.6767 70.6273 �10.1616 12.8602 0.55634 0.21612
Northern white-cedar 7 0.3832 31.7892 �17.4951 5.0296 0.33978 0.23332
American basswood 8 1.2327 37.5967 �15.4059 2.6184 0.49589 0.11682
Eastern hemlock 7 0.8326 36.3368 �20.4602 4.7204 0.68454 0.00002 2
American elm 8 1.3063 38.4440 �15.5705 2.3001 0.34894 0.25188

aWith a few exceptions, this is b4 from Table 2 of Ek et al. (1984, p. 4).
bNotes: 1 � since this species was absent from Ek et al. (1984), an estimate was included; 2 � adjusted from the original Ek et al. (1984) values.
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stems (i.e., high local density), Equation 1 fails to produce a 40-m
tall pine, even at dbh � 165 cm.

The asymptotic nature of the Ek et al. (1984) height–diameter
equation at a relatively modest size is very apparent in all species. In
practical terms, this flattening means that a tree will increase only a
fraction of a meter over a range of diameters that could triple or
quadruple. Hence, a tree of national champion size would never be
attained using the original formulation’s predictions. However,
Equation 3 is fully capable of predicting a tree of champion size
while still reasonably forecasting heights of trees of smaller diame-
ters. As an example (Figure 3), even at a moderate SI and high BA,
Equation 3 predicts eastern white pine heights over 50 m tall for
trees greater than 120 cm dbh. This range of heights is comparable
with champion trees reported regionally and found in Lake States SI
curves (e.g., Hahn and Carmean 1982) that suggest 300-year-old
eastern white pine can exceed 40 m and may reach 50� m under
certain circumstances (Figure 4).

Finally, the progressive height increase with larger diameters (es-
pecially for very big trees) displayed by the new model is consistent
with the limited published information on height growth in cham-
pion-sized individuals. Fowells (1965, p. 332) reported that
100-year-old eastern white pine added height at approximately 12
cm annually, and reached a minimum rate of about 6 cm annually at
165 years old, which the species “… apparently sustained for the life
of the tree.” If maintained over the long-term, this increment under
favorable conditions would eventually yield 60� m eastern white
pines.

Differences between New and Original Height–diameter
Equations

Just as important as being able to predict large-sized trees, Equa-
tion 3 is also capable of emulating heights for small- to moderate-
sized trees. With the notable exception of an open-grown tree, Fig-

ure 3 shows that the differences between the new and original height
models are very small. For eastern white pine, heights predicted with
Equation 3 differed by only 20–30 cm from those predicted with
Equation 1 until the species reach 25 cm dbh (Table 3). Above this
diameter, fundamental differences in curve shape lead to increas-
ingly large departures.

The minor differences between the models in small- to moder-
ate-sized trees is not unique to eastern white pine—using a subset of
other taxa (Table 3) predicted height variation between the models
was also measured in centimeters. Projections of sugar maple (Acer
saccharum Marsh.), quaking aspen (Populus tremuloides Michx.),
northern red oak (Quercus rubra L.), and eastern hemlock (Tsuga
canadensis [L.] Carr.) all fell within 1.25 m of the original function
up to about 25 cm dbh. However, discrepancies grow rapidly with
increasing diameter—quaking aspen, eastern white pine, and
northern red oak differed by 2.86–4.05 m in height by 50 cm dbh,
and sugar maple and eastern hemlock varied by almost 6 m at 50 cm
dbh (Table 3).

The inability to accurately predict the heights of moderate- to
large-sized trees is largely a consequence of inadequacies in the orig-
inal data. Eastern white pines, e.g., frequently reach diameters of
60–90 cm dbh. The original model (on an intermediate SI50 �
18.3 m and with BA � 34.4 m2/ha) would only yield a height of
between 28 and 31 m for this diameter range, although eastern
white pines of this size commonly reach 35–40 m (e.g., Fowells
1965, Wendel and Smith 1990). This disparity gets progressively
more apparent as the trees get larger. In every case presented in Table
4, the original model underestimates tree height for an individual of
champion size between 6 and 13 m. Because the new model has been
optimized for a tree of champion dimensions, the differences in
predicted height differed by 4 cm or less for quaking aspen, northern
red oak, and eastern hemlock to as much as 22 cm for eastern white
pine (Table 4).

It is not unusual for data-limited height–diameter models to
underpredict maximum tree height. The two examples presented
in this work (Ek et al. 1984, Peng et al. 2001) fit equations with
regression techniques that optimize model fit to the totality of
the data, not the extremes. Although statistically sound, this places

Figure 3. Comparison of eastern white pine curves from the new
height–diameter equation and the original Ek et al. (1984) func-
tion. Note the close approximation of the original predictions by
the new model until approximately 25 cm dbh, when the two
models began to deviate sharply from each other. The exception to
this pattern is found at the lowest basal area (for an open-grown
tree, or 0 m2/ha), for which the original formulation can not predict
anything taller than 1.37 m.

Figure 4. SI curves for eastern white pine adapted from Hahn and
Carmean (1982). Note that heights in excess of 45 m are possible
on better quality sites.
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certain constraints on the predictive capacity of the equation. These
models predict height well for their observed range of data, but
extrapolation beyond this point proves increasingly tenuous as tree
size increases. Ecological models often forecast trees to their known
longevities (potentially hundreds of years) and to the maximum
limits of known stem size. Without a means to extend existing
height–diameter models toward these logical end points, extrapo-
lated models will systematically bias height outcomes (typically neg-
atively) and any other prediction (e.g., volume) based on them.

Sensitivity Analysis
Although using champion trees allows for the extension of height

modeling, there is considerable uncertainty in the actual maximum
height values to apply. Some of this is systemic—there are likely
taller (or more proportionally appropriate) individuals still unmea-
sured across the range of most species that could significantly influ-
ence the outcome of this approach. Similarly, regional differences in
maximum tree height may prove important. Other issues are proce-

dural, because there can be significant errors in maximum height
measurements based on the technique used (e.g., Blozan 2006,
Bragg 2008).

To evaluate the influence of champion tree height uncertainty on
model extension outcomes, the height trend forecast by Equation 3
was compared for eastern white pine (Figure 5) with trajectories
based on the same champion dbh with 	10% variation in the
height (50.9 m) of this tree (thus, 45.81 and 55.99 m, respectively,
for the lower and upper bounds). Graphically, the sensitivity anal-
ysis shows that up to about 30 cm dbh there is virtually no difference
between the predictions from Equation 3 and those fit to the other
champion tree heights (Figure 5). Not surprisingly, the models di-
verged rapidly after this point.

Another lesson from this exercise is that overestimates of maxi-
mum tree height are more likely to produce larger absolute responses
in tree heights than underestimates. By the time these trees reach
200 cm dbh (certainly on the upper end of eastern white pine di-
mensions), a 10% overestimate of height (roughly 5 m) translates

Table 3. Absolute and relative departure comparison between Equations 1 and 3 by size class for select species, including the standard
error from Ek et al. (1984), assuming SI50 equivalent to the species maximum (Table 1) and a local basal area of 68.9 m2/ha.

Species and Prediction

Tree dbh (in cm) Reported
standard

error (m)a0.0 2.5 5.0 10.0 25.0 50.0 100.0

Sugar maple
Ek et al. height (m) 1.37 5.25 9.00 14.81 22.88 25.46 25.76 2.35
New equation height (m) 1.56 5.60 8.98 14.31 23.94 31.44 37.44
Differenceb (m) 0.19 0.35 �0.02 �0.50 1.07 5.98 11.68
Relative differencec (%) 13.7 6.6 �0.2 �3.4 4.7 23.5 45.3

Eastern white pine
Ek et al. height (m) 1.37 4.54 7.45 12.57 23.64 33.17 38.99 3.26
New equation height (m) 1.88 4.73 7.40 12.25 23.84 36.79 51.30
Difference (m) 0.51 0.19 �0.05 �0.32 0.20 3.63 12.31
Relative difference (%) 37.0 4.2 �0.7 �2.6 0.9 10.9 31.6

Quaking aspen
Ek et al. height (m) 1.37 4.50 8.20 14.49 23.78 26.79 27.12 2.04
New equation height (m) 1.37 4.44 8.24 14.51 24.03 29.64 33.25
Difference (m) 0.00 �0.06 0.04 0.02 0.25 2.86 6.14
Relative diff. (%) �0.1 �1.4 0.5 0.1 1.0 10.7 22.6

Northern red oak
Ek et al. height (m) 1.37 4.32 7.82 13.76 22.52 25.36 25.67 2.50
New equation height (m) 1.37 5.77 9.31 14.61 23.33 29.41 33.87
Difference (m) 0.00 1.45 1.49 0.85 0.80 4.05 8.20
Relative difference (%) 0.0 33.5 19.0 6.2 3.6 16.0 31.9

Eastern hemlock
Ek et al. height (m) 1.37 2.67 5.10 10.12 17.87 19.91 20.05 2.19
New equation height (m) 1.31 2.97 5.26 9.88 19.09 25.83 30.72
Difference (m) �0.06 0.30 0.16 �0.23 1.22 5.93 10.67
Relative difference (%) �4.6 11.2 3.1 �2.3 6.8 29.8 53.2

aStandard error reported in Table 2 of Ek et al. (1984, p. 4).
bDifference � new model � predicted Ek et al. height.
cRelative difference � �(new model � predicted Ek et al. height)/predicted Ek et al. height� � 100.

Table 4. Absolute and relative height differences for select species between the Ek et al. (1984) and new model predictions with trees
of champion-caliber dimensions.

Species

Champ.a

dbh
(cm)

Champ.
height

(m)

Ek et al. prediction New model prediction

Height
at champ.
dbh (m)

Diff. w/
champ.b

(m)

Rel. diff.
w/champ.c

(%)

Height
at champ.
dbh (m)

Diff. w/
champ.

(m)

Rel. diff.
w/champ.

(%)

Sugar maple 111.8 38.40 25.76 �12.64 �32.91 38.21 �0.19 �0.49
Eastern white pine 97.0 50.90 38.85 �12.05 �23.67 50.68 �0.22 �0.44
Quaking aspen 98.6 33.22 27.12 �6.10 �18.37 33.20 �0.02 �0.07
Northern red oak 111.8 34.44 25.67 �8.77 �25.46 34.42 �0.02 �0.05
Eastern hemlock 100.3 30.78 20.05 �10.73 �34.86 30.74 �0.04 �0.14

a Champ. � champion from American Forests (2000), the Wisconsin state champion list, and the ENTS website.
b Diff(erence) w/champ(ion tree) � model predicted height � champion height.
c Rel(ative) diff(erence) w/champ(ion) � �(model predicted height � champion height)/champion height� � 100.
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into over 10 m in height, while a 10% underestimate was just under
9 m less at 200 cm dbh. Either condition suggests that model exten-
sion utility depends on the accuracy of maximum tree height
measurements.

An Example Modeling Application
The original Ek et al. (1984) height–diameter equations have

been incorporated into the Lake States variant of the Forest Vege-
tation Simulator (LS-FVS; FVS Staff 1993), as well as ecological
models such as NORTHWDS and NORTHWDS Individual Re-
sponse Model (NIRM; Bragg et al. 2004). Hence, these simulators
are theoretically subject to the same constraints imposed by the
statistical limitations of Equation 1. Because their predictions reflect
the behavior of their internalized algorithms, departures from true
tree height impact other simulated outcomes. For instance, NIRM
uses height to calculate total live crown surface area, which in turn
drives tree growth and vigor and thus influences attributes such as
biomass accumulation and propagule production. Likewise, LS-
FVS depends on tree height to predict outcomes such as total and
merchantable tree volumes.

The choice of height–diameter model significantly influenced
predictions of tree height in NIRM, because both Equations 1 and
3 were used to compare eastern white pine height growth under the
exact same environment. For an intermediate site (SI50 � 18.7 m) in
a moderately dense stand (BA � 15 m2/ha), simulations produced
increasingly disparate heights during the model run, with a 10%
discrepancy after 40 years, 20% difference at 90 years, and over 30%
less height after 300 simulated years—a realized height departure of
11.5 m (Figure 6). When all other factors are equal, shorter trees
have less crown surface area in NIRM, which in turn predicts slower
growth rates, reduced propagule production, and lower timber

Figure 5. Sensitivity analysis based on �10% height added to the
champion eastern white pine (same dbh used), the refit to Equa-
tion 3.

Figure 6. Influence of the original Ek et al. (1984); solid line) and new (dashed line) height functions on predicted tree height (a) and
expressed as a relative (percent) difference (b) as simulated by the NIRM individual-based model. Note that these are not given as a
function of tree age, but years since the beginning of the simulation, assuming a 6-cm dbh eastern white pine at the start.
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yields. For stand-level simulations, this would lower productivity
and may create differences in the structural complexity. It may be
difficult, e.g., to project the formation of a pine supercanopy over a
mature hardwood stand if the height–diameter model is too strictly
constrained.

Models (such as NIRM) that use an instantaneous rather than a
cumulative or averaging function to predict height must also ensure
that abrupt shifts in environmental conditions do not invoke irra-
tional height responses. As an example, unless otherwise con-
strained, both Equations 1 and 3 would drastically shrink trees if
they are suddenly isolated. Think of a 30-m tall seed tree left to
regenerate a cleared patch of timber—once the BA of the surround-
ing stand drops from 20 to 0 m2/ha, Equation 1 predicts a height of
1.37 m and Equation 3 predicts 15 m. Obviously, unless the top is
lost as an immediate and universal consequence of this stand clear-
ing, neither outcome portrays the reality of height accumulation.

Conclusions
Even the best allometric relationship will not account for all of

the factors resulting in a real-world tree of a specific dimension. The
complexity imbued on individual trees by an ever changing environ-
ment, genetic variability, suppression, disturbance-related injuries,
and many other factors will always produce inconsistent heights.
This helps to explain why studies of modeled versus measured tree
heights usually find field measurements superior to simulations
(e.g., Bechtold et al. 1998). Some compromises based on the objec-
tives of the simulation and the need for biological realism must be
made, as long as the inherent weaknesses of these predictors are
recognized and expressed. Ideally, height models should predict
trees over the range of potential diameters, especially when incorpo-
rated in a system capable of forecasting hundreds of years into the
future. If nothing else, a height–diameter model should not system-
atically bias predictions so substantially as to make simulating nat-
ural forest characteristics impossible.

The height model extension technique described in this article is
one of several possible approaches and has the potential to extend
height equations beyond their fitted range. Although the consider-
able precision of this approach is an artifact of how the function was
fitted, it does permit the heights of very large trees to be estimated in
a far more reliable fashion without extensive new sampling. Ideally,
a function would be derived from field-measured data and then fit to
allow for the best expression of the information. Alternatively, a
dbh-based correction factor could also be applied, even though this
would also require at least some real tree data to implement. Given
the all-to-common circumstances when a height–diameter relation-
ship can not be independently derived across the range of potential
heights and diameters, the merger of existing height–diameter equa-
tions with reliable and accurate big tree data is a practical means to
extend these allometric models beyond their initial size limitations.
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